

Assessing the implications of atmospheric deposition and harvestresidue removal on nitrogen budgets in Irish forests

Jim Johnson, Julian Aherne & Thomas Cummins

Pat Neville jim.johnson@ucd.ie

3rd ICP Forests Scientific Conference – 20 27 May 2014, Athens, Greece

Photograph: Randy E Barne

Continued inputs of nitrogen (N) from atmospheric deposition can alter N cycling in forests with important ecological effects

- 1. Changes to net primary productivity & C sequestration
- 2. Changes to plant species diversity
- 3. Altered tree nutrition and vitality
- 4. Nitrate leaching leading to soil acidification and mobilisation of metals

Over the long-term, the N status of forest ecosystems depends on the balance between input and output fluxes

Nitrogen deposition in Ireland is dominated by domestic emissions of ammonia

Henry & Aherne, 2014 Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands Science of The Total Environment, Vol: 470–471, 216 – 223

In addition to atmospheric deposition, management strongly influences N cycling in Irish forests

- 1. Primary plantation forests located on shallow mineral or organic soils
- 2. Intensively managed: plantations comprise fast growing conifer species with short rotations
- 3. Afforestation is recent majority are first rotation forests converted from acidic grassland, moorland or peat.
- 4. Removal of harvest residues for bio-energy

WTH

SOH

Study objectives:

1. To assess the impact of atmospheric N deposition and harvest scenarios on N budgets in Irish forests

 $\Delta N_{ecosystem} = N_{deposition} + N_{fixation} - N_{harvest} - N_{leach} - N_{denit}$

2. To determine the critical load of nutrient N to prevent N leaching and associated soil acidification

$$CI_{nut}(N) = N_{harvest} + N_{immob} + N_{denit} + N_{fixation} + N_{leach}$$

Approach: Site specific budgets @ 40 forest ICP-Forest plots

$$\Delta N_{ecosystem} = N_{deposition} + N_{fixation} - N_{harvest} - N_{leach} - N_{denit}$$
$$NO_{3}^{-} + NH_{4}^{+} + NO_{x} + NH_{3}$$

$$\Delta N_{ecosystem} = N_{deposition} + N_{fixation} - N_{harvest} - N_{leach} - N_{denit}$$
$$NO_{3} + NH_{4} + NO_{x} + NH_{3}$$

EMEP/MSC-W (Gauss et al. 2012) Transboundary air pollution by main pollutants (S, N, O3) and PM in 2010

Figure 9: Top left: Deposition of oxidised nitrogen in Ireland. Unit: $mg(N)/m^2$. Top right: The six main contributors to oxidised nitrogen deposition in Ireland. Unit: %. Bottom left: Oxidised nitrogen deposition from transboundary sources. Unit: $mg(N)/m^2$. Bottom right: Fraction of transboundary contribution to total deposition. Unit: %.

$$\Delta N_{ecosystem} = N_{deposition} + N_{fixation} - N_{harvest} - N_{leach} - N_{denit}$$

$$NO_{3} + NH_{4} + NO_{x} + NH_{3}$$

$$\Delta N_{ecosystem} = N_{deposition} + N_{fixation} - N_{harvest} - N_{leach} - N_{denit}$$

GrowFor

1. BioSoil survey

2. Growfor: Irish dynamic yield models for forest management

Accept Choice

Eqt No Component Source Equation Irish yield model biomass = volume ha⁻¹·stemwood basic density Stemwood 1 Stembark $\ln(biomass) = 0.126574 \cdot dbh - 0.1065634$ 2 This study Live branch $\ln(biomass) = 0.1126 \cdot dbh - 0.3405$ 3 This study Dead Branch This study $biomass = 1.2771 \cdot dbh - 12.378$ 4 $log_{10}(needle) = 2.73955 \cdot log_{10}(dbh) - 2.78585$ Needle 5 This study

3. Allometric equations

4. Element concentrations

COFOR

Model Options

SS - (Un-Thinned) NS - (Thinned)

NS - ((Un-Thinned) DF - (Thinned)

DF - (Un-Thinned)

LP - (Un-Thinned)

LP - (Thinned

SP - (Thinned) SP - (Un-Thinned)

		mg/g					
Species	Component	С	N	Р	K	Ca	Mg
SS	Branch	508	3.91	0.40	1.75	2.39	0.46
	Needles	524	11.93	0.98	4.72	3.23	0.68
	Stem wood	509	1.21	0.04	0.33	0.49	0.08

$$\Delta N_{ecosystem} = N_{deposition} + N_{on} - N_{harvest} - N_{leach} - N_{denit}$$

- 1. The N fixing term ($N_{fixation}$) was omitted no N-fixing plants or mosses
- 2. Leaching losses set to a minimum (1 kg N ha⁻¹ yr⁻¹)
- 3. Denitrification rates (kg N ha⁻¹ yr⁻¹) based on literature values:
 - ~ 0.5 @ podzol Wales (Emmett et al. 1995)
 - 0.8 (10 months) @ peaty gley England (Zerva & Mencuccini 2005)
 - 0.03 to 1.31 @ 7 sites in Europe (Pilegaard et al. 2006)

Well-drained mineral	0.5
Poorly drained mineral (gley)	1.0
Peat	0.0

1. N deposition was greater than N removal in pine but equal to or less than N removal in spruce

2. Budgets were negative for spruce when harvesting residues were removed

N removal in spruce was larger than that reported elsewhere in Europe and North America

		kg N ha ⁻¹ yr ⁻¹				
ref	species	country	stem only whole tree note			
This study	Picea sitchensis	Ireland	12	19		
	Pinus contorta	Ireland	4.4	8.7		
Stevens 1995	Picea sitchensis	UK	2.4-3.8	7.1-9.0		
Miller et al. 1993	Picea abies	Scotland	2.8	7.2		
	Picea sitchensis	Scotland	3.0	7.4		
Akselsson et al. 2007	Picea abies	Sweden	1.2-2.8	3.0-6.5		
Zetterberg et al. 2013	Picea abies	Sweden	0.7-1.8	3.5-5.9	From: Björkroth & Rosén 1977	
	Pinus sylvestris	Sweden	1.1	1.6		
Palviainen & Finer 2012	Pinus	Finland	2.3	5.2		
	Picea	Finland	2.7	9.6		
	Betula	Finland	4.4	8.3		
Ranger et al. 1995	Pseudotsuga	France	5.8	9.8	60 year rotation	
Fichter et al. 1998	Fagus	France	3.3			
	Picea abies	France	4.7			
Paré et al. 2002	Balsam fir	Canada	1.2	3.9	medium stand density	
	Black spruce	Canada	0.6	1.8		
	Jack pine	Canada	1.1	2.0		
	Paper birch	Canada	1.6	4.4		
	Trembling aspen	Canada	2.1	4.7		
Federer et al. 2001	Hardwoods	USA		2.0-3.2	120 year rotation	

The large N removal in harvesting for spruce was due to the high rate of biomass removal and stemwood N concentrations

species	source	Location	mg g⁻¹	range	# sites
Picea sitchensis	this study	Ireland	1.2	(0.9 - 1.7)	5
	Tobin et al. 2008	Ireland	2.4	(2.3 - 2.6)	2
	Carey & O'Brian 1979	Ireland	1.6	-	1
	Carey 1980	Ireland	0.7	-	1
	Freer-Smith & Kennedy 2003	UK	0.5	(0.3 - 1.2)	24
	Miller 1993	Scotland	0.3	-	1
Picea abies	Jacobsen et al. 2002	Europe	0.8	(0.3 - 2.1)	29
	Lucas et al. 2014	Sweden	1.0	(0.5 - 1.8)	6

		tonnes ha-1 yr-1		
ref	species	stem only	whole tree	note
this study	Picea sitchensis	8.3	9.5	
	Pinus contorta	4.7	5.2	
Stevens 1995	Picea sitchensis	4.6 - 5.3	5.9 - 6.4	
Zetterberg et al. 2013	Picea abies	2.1	2.8	
	Pinus sylvestris	1.6	2.0	
Palviainen & Finer 2012	Pinus	2.5	2.8	
	Picea	2.5	3.3	
	Betula	2.8	3.1	
Miller et al. 1993	Picea abies	4.0	4.5	
	Picea sitchensis	4.7	5.3	
Ranger et al.1995	Pseudotsuga	5.9	6.6	60 year rotation

3. How much N deposition before ecosystem damage? - critical loads

$$CI_{nut}(N) = N_{harvest} + N_{immob} + N_{denit} + N_{fixation} + N_{leach}$$

- 1. Acceptable leaching losses ~ 2 kg N ha⁻¹ yr⁻¹
 - Based on a concentration of 0.2 mg L^{-1} (Spranger et al. 2004)
- 2. Immobilisation ~ $2 \text{kg N} \text{ha}^{-1} \text{yr}^{-1}$
 - Values used for Sitka spruce: 1 3 kg N ha⁻¹ yr⁻¹ (Hornung et al. 1995; Emmett & Reynolds 1996)
- 3. Critical loads results
 - for spruce: 16, 19 and 23 kg N ha⁻¹ yr⁻¹
 - for pine: 9, 10 and 13 kg N ha⁻¹ yr⁻¹
- 4. Excedance of critical load
 - pine: stem-only @ 7 sites (~5 kg N ha⁻¹ yr⁻¹), whole-tree @ 5 sites (~3 kg N ha⁻¹ yr⁻¹)
 - for spruce: stem–only @ 8 sites (1.7 kg N ha⁻¹ yr⁻¹), whole-tree none

0 kg ha⁻¹ yr⁻¹

-20

-10

10

20

4. There was considerable uncertainty around fluxes at individual sites

Due to uncertainty associated with:

- allometric equations
- N concentrations in biomass
- uncertainty around deposition interpolation, dry deposition velocity factor (NH₃)

Other uncertainties -

- removal of material in thinnings
- leaching losses post harvesting
- N immobilisation factor
- Temporal variation over the period of the rotation
- Soil sink strength for N deposition presence of peat

What can we conclude?

- 1. Nitrogen budgets are balanced under current stem-only harvest scenario for spruce N deposition balanced by large removal
- 2. Potential for negative budgets under whole-tree harvest scenario
- 3. Critical loads high and rarely exceeded
 - N deposition important for uptake?
- 4. Considerable uncertainty around budget and critical load calculations
 - simple mass balance approach
 - assumed leaching available for uptake or immobilisation

Acknowledgements: We gratefully acknowledge support from the Department of Agriculture, Fisheries and Food under the National Development Plan 2006 Research Stimulus Fund (07 510 FORFLUX) as well as the Environmental Protection Agency (EPA) for supporting this meeting.

Thank You

